The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels
نویسندگان
چکیده
Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαβ-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We found that recombinant (r)AtPDF2.3 blocks Kv1.2 and Kv1.6 potassium channels, akin to the interaction between scorpion toxins and potassium channels. Moreover, rAtPDF2.3[G36N], a variant with a KCXN toxin signature (K-C5-R-N), is more potent in blocking Kv1.2 and Kv1.6 channels than rAtPDF2.3, whereas rAtPDF2.3[K33A], devoid of the toxin signature, is characterized by reduced Kv channel blocking activity. These findings highlight the importance of the KCXN scorpion toxin signature in the plant defensin sequence for blocking potassium channels. In addition, we found that rAtPDF2.3 inhibits the growth of Saccharomyces cerevisiae and that pathways regulating potassium transport and/or homeostasis confer tolerance of this yeast to rAtPDF2.3, indicating a role for potassium homeostasis in the fungal defence response towards rAtPDF2.3. Nevertheless, no differences in antifungal potency were observed between the rAtPDF2.3 variants, suggesting that antifungal activity and Kv channel inhibitory function are not linked.
منابع مشابه
The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana
Potassium (K(+)) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K(+) from the soil and its transport to growing organs is essential for a healthy plant development. Upt...
متن کاملPlant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri.
Plant defensins are recognized for their antifungal properties. However, a few type 1 defensins (PDF1s) were identified for their cellular zinc (Zn) tolerance properties after a study of the metal extremophile Arabidopsis halleri. In order to investigate whether different paralogues would display specialized functions, the A. halleri PDF1 family was characterized at the functional and genomic l...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملThe Role of Potassium Channels in Arabidopsis thaliana Long Distance Electrical Signalling: AKT2 Modulates Tissue Excitability While GORK Shapes Action Potentials.
Fast responses to an external threat depend on the rapid transmission of signals through a plant. Action potentials (APs) are proposed as such signals. Plant APs share similarities with their animal counterparts; they are proposed to depend on the activity of voltage-gated ion channels. Nonetheless, despite their demonstrated role in (a)biotic stress responses, the identities of the associated ...
متن کاملArabidopsis thaliana vacuolar TPK channels form functional K+ uptake pathways in Escherichia coli
Very few vacuolar two pore potassium channels (TPKs) have been functionally characterized. In this paper we have used complementation of K(+) uptake deficient Escherichia coli mutant LB2003 to analyze the functional properties of Arabidopsis thaliana TPK family members. The four isoforms of AtTPKs were cloned and expressed in LB2003 E. coli background.The expression of channels in bacteria was ...
متن کامل